2023-03-27
functionname <- function(argument1, argument2) {
# Function contents
}
mymean2(mtcars$mpg)
Why no output?
(mymean_obj <- mymean2(mtcars$mpg))
[1] 20.09062
Don’t assign last step to object
Or use return()
multiplier <- function(x, constant) {
x * constant
}
multiplier(x = 7, constant = 3)
[1] 21
multiplier(x = 1:10, constant = 3)
[1] 3 6 9 12 15 18 21 24 27 30
multiplier(x = 1:10)
Error in multiplier(x = 1:10) :
argument "constant" is missing, with no default
multiplier2 <- function(x, constant = 3) {
x * constant
}
multiplier2(x = 1:10)
[1] 3 6 9 12 15 18 21 24 27 30
multiplier2(x = 1:10, constant = 5)
[1] 5 10 15 20 25 30 35 40 45 50
Here’s the formula that reverse codes scale values
Value
max
+
Value
min
-Score
Write a function that calculates the reversed code score. What arguments do you need?
head(penguins[, 1:5])
# A tibble: 6 × 5
species island bill_length_mm bill_depth_mm flipper_length_mm
<fct> <fct> <dbl> <dbl> <int>
1 Adelie Torgersen 39.1 18.7 181
2 Adelie Torgersen 39.5 17.4 186
3 Adelie Torgersen 40.3 18 195
4 Adelie Torgersen NA NA NA
5 Adelie Torgersen 36.7 19.3 193
6 Adelie Torgersen 39.3 20.6 190
mymean6(penguins$bill_length_mm)
[1] NA
head(penguins[, 1:5])
# A tibble: 6 × 5
species island bill_length_mm bill_depth_mm flipper_length_mm
<fct> <fct> <dbl> <dbl> <int>
1 Adelie Torgersen 39.1 18.7 181
2 Adelie Torgersen 39.5 17.4 186
3 Adelie Torgersen 40.3 18 195
4 Adelie Torgersen NA NA NA
5 Adelie Torgersen 36.7 19.3 193
6 Adelie Torgersen 39.3 20.6 190
mymean10(penguins$bill_length_mm)
[1] 43.92193
But if you want the user to control whether NA
is ignored
mymean11(penguins$bill_length_mm)
[1] 43.92193
mymean11(penguins$bill_length_mm, ignore_na = FALSE)
[1] NA
Use else if
age_cutoffs <- function(x) {
if(x <= 1.5) {
"puppy"
} else if (x <= 3) {
"adolescent"
} else if (x <= 10) {
"adult"
} else {
"senior"
}
}
age_cutoffs(1)
[1] "puppy"
age_cutoffs(2)
[1] "adolescent"
age_cutoffs(5)
[1] "adult"
age_cutoffs2 <- function(x) {
if(x <= 1.5) {
"puppy"
} else if (x <= 3) {
"adolescent"
} else if (x <= 10) {
"adult"
} else if (x <= 20) {
"senior"
} else {
stop("Age exceeded 20.")
}
}
age_cutoffs2(15)
[1] "senior"
age_cutoffs2(22)
Error in age_cutoffs2(22) : Age exceeded 20.
Use switch()
vector <- rcauchy(100)
central_tend(x = vector, type = "mean")
[1] 3.548399
central_tend(x = vector, type = "median")
[1] 0.04851638
central_tend(x = vector, type = "trimmed")
[1] 0.3435384
What if we want user to input grouping and response variable?
penguins |>
grouped_mean(group_var = species, mean_var = bill_length_mm)
Error in `group_by()`:
! Must group by variables found in `.data`.
✖ Column `group_var` is not found.
Run `rlang::last_trace()` to see where the error occurred.
Embrace variables in {{ }}
penguins |>
grouped_mean2(group_var = species, mean_var = bill_length_mm)
# A tibble: 3 × 2
species `mean(bill_length_mm, na.rm = TRUE)`
<fct> <dbl>
1 Adelie 38.8
2 Chinstrap 48.8
3 Gentoo 47.5